Groups Acting on Manifolds: around the Zimmer Program

نویسنده

  • DAVID FISHER
چکیده

This paper is a survey on the Zimmer program. In its broadest form, this program seeks an understanding of actions of large groups on compact manifolds. The goals of this survey are (1) to put in context the original questions and conjectures of Zimmer and Gromov that motivated the program, (2) to indicate the current state of the art on as many of these conjectures and questions as possible and (3) to indicate a wide variety of open problems and directions of research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On cohomogeneity one nonsimply connected 7-manifolds of constant positive curvature

In this paper, we give a classification of non simply connected seven dimensional Reimannian manifolds of constant positive curvature which admit irreducible cohomogeneity-one actions. We characterize the acting groups and describe the orbits. The first and second homo-topy groups of the orbits have been presented as well.

متن کامل

Arithmetic Groups Acting on Compact Manifolds

In this note we announce results concerning the volume preserving actions of arithmetic subgroups of higher rank semisimple groups on compact manifolds. Our results can be considered as the first rigidity results for homomorphisms of these groups into diffeomorphism groups and show a sharp contrast between the behavior of actions of these groups and actions of free groups. Let G be a connected ...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Introduction to Orbifolds

Orbifolds lie at the intersection of many different areas of mathematics, including algebraic and differential geometry, topology, algebra and string theory. Orbifolds were first introduced into topology and differential geometry by Satake [6], who called them V-manifolds. Satake described them as topological spaces generalizing smooth manifolds and generalized concepts such as de Rham cohomolo...

متن کامل

Discrete Groups and Non-riemannian Homogeneous Spaces

A basic question in geometry is to understand compact locally homogeneous manifolds, i.e., those compact manifolds that can be locally modelled on a homogeneous space J\H of a finite-dimensional Lie group H. This means that there is an atlas on a manifold M consisting of local diffeomorphisms with open sets in J\H where the transition functions between these open sets are given by translations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008